Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Electrolytes containing multiple redox couples are promising for improving the energy density of flow batteries. Here, two chelated chromium complexes that are structural isomers are characterized and combined to generate electrolytes containing up to 2 M of active species, corresponding to 53.6 Ah L−1. The mixed isomer approach enables a significantly higher active material content than the individual materials would allow, affording energy dense cells with Coulombic efficiencies of ≥99.6% at 100 mA cm−2 and an open circuit voltage of 1.65 V at 50% state-of-charge. This high concentration, however, comes with a caveat; at a given concentration, an equimolar mixed electrolyte leads to lower voltage efficiency compared to using the individual isomers, while Coulombic efficiency remains constant. Our work demonstrates that exploiting structural isomerism is an efficient approach to improve capacity, but active materials must be selected carefully in mixed systems as differences in operating potentials negatively affect energy efficiency.more » « less
-
Aminopolycarboxylate chelates are emerging as a promising class of electrolyte materials for aqueous redox flow batteries, offering tunable redox potentials, solubility, and pH stability through careful selection of ligands and transition metal ions. Despite their potential, the impact of molecular structure modifications on the electronic and electrochemical properties of these chelates remains underexplored. Here, we examine how introducing a hydroxyl group, often employed for its solubilizing properties, to the backbone of CrPDTA, a reference chelate material, significantly changes the thermodynamics and kinetics of the chelate's redox process. We correlate changes in molecular and electronic structures to different electrochemical responses resulting from the hydroxyl addition and show that the introduction of this functional group leads to a distortion in the octahedral coordination of chromium. Furthermore, increased anisotropic spin density and nonintegral oxidation state changes in the Cr metal center result in a larger barrier for electron transfer in CrPDTA‐OH. It is demonstrated that preserving a hexacoordinate chelate structure across a broad pH range is crucial for efficient flow battery application and it is emphasized that ligand modifications must avoid distorting the octahedral coordination of the transition metal.more » « less
An official website of the United States government
